Math 051

-1
cos|cos u|=cosb

Want to Prove:

Domain

y:cos_lx —-1<x<1
. -1

y=sin x -1<x<1
-1

y=tan Xx xelR
-1

y=cot x xeR

-1
=sec x x<-1 or x=1
y

-1
=cs¢c x x<-1 or x21
y

WTP sin(cos_l u): 1- u2

Inverse Functions -- continued

Range
0<y<rm

<y<
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Let cos u=>» —1<u <1 domain of inverse cosine

0<b<m range of inverse cosine

Take cos of both sides

u =cosb u is in proper interval

2

2 L2
u =1-sin b
) 2
sin b=1-u

) 2
sinb=2V1—-u

. -1 2 . ..
sm(cos u)z +V1-u We defined this in the Let statement

. -1 2
sinfcos ul|=NV1-u

2 .
u =cos b square both sides

Mr. Mumaugh

Since b is an element in the first or second quadrant and since sine of anything in the first or second
quadrant is positive, we know that this is expression is positive thus
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11 WTP_cos(tan_lu)z—

-1
Let tan u=»>b uelR —T<p<Z
-1
tan(tan u):tanb

sinb
u =

cosb
ucosb =sinb

u2 0032 b= sinzb
u2 coszb= l—coszb
cos2b+u2 coszb =1
coszb(1+u2)=1

1
coszb =

1+u
1

\]1+u2

Remember that b is an element in the 4th or 15t quadrant so cosine of any value in either of those
1

cosb==*

. . -1
quadrants is positive. Thus we have cos( tan u ) = >
I+u

-1 -1
v WTP cos x=sec (%) x#0
-1
Let y=cos x
-1
cosy:cos(cos x):x

1
X

secy =
sec_l(sec )=sect
Y x
=sec
Y x

-1
COS Xx= SGC%
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u

, -1
\Y WTP sm(tan u)=—2 uelk
Vi+u

-1 .
Let tan wu=y We restrict the range to -2 <y<7

tany=u

siny

=u
cosy

.2 2 2 2 .2 .
sin y=u cos y=u |l—sin y| because we want siny

.2 2 .2 2
sin y+u sin y=u

.2 2 2
sin y(1+u )=u

2
u

)
sin” y= 5
1+u

u

siny =t ——
[ 2
1+u

: -1
Since y=tan u weknow -7 <y<Z.

Lets consider the interval 0 <y< % This is the first quadrant. Sine and cosine are both positive in the

first quadrant so we know siny =0 so we select the positive square root.

In the interval —% <y <0 (the fourth quadrant) we know cosine is positive and sine is negative thus we

know tany is negative and since tany=u we also know u is also negative. The significance of this is that

we do not need the negative sign to make the expression — negative so the conclusion is that
I+u

. -1 u
s1n(tan u):—z uelk!

14+u

We can also explore these topics using triangles like we did in the first unit!



