Want to Prove:

Domain Range
$$y = \cos^{-1} x \qquad -1 \le x \le 1 \qquad 0 \le y \le \pi$$

$$y = \sin^{-1} x \qquad -1 \le x \le 1 \qquad -\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

$$y = \tan^{-1} x \qquad x \in \mathbb{R} \qquad -\frac{\pi}{2} < y < \frac{\pi}{2}$$

$$y = \cot^{-1} x \qquad x \in \mathbb{R} \qquad 0 < y < \pi$$

$$y = \sec^{-1} x \qquad x \le -1 \text{ or } x \ge 1 \qquad 0 \le y \le \pi; \quad y \ne \frac{\pi}{2}$$

$$y = \csc^{-1} x \qquad x \le -1 \text{ or } x \ge 1 \qquad -\frac{\pi}{2} \le y \le \frac{\pi}{2}; \quad y \ne 0$$

II WTP
$$\sin(\cos^{-1}u) = \sqrt{1-u^2}$$

Let $\cos^{-1}u = b$ $-1 \le u \le 1$ domain of inverse cosine $0 \le b \le \pi$ range of inverse cosine $\cos(\cos^{-1}u) = \cos b$ Take $\cos f$ both sides $u = \cos b$ u is in proper interval $u^2 = \cos^2 b$ square both sides $u^2 = 1 - \sin^2 b$ $\sin^2 b = 1 - u^2$ $\sin b = \pm \sqrt{1-u^2}$ We defined this in the Let statement

Since b is an element in the first or second quadrant and since sine of anything in the first or second quadrant is positive, we know that this is expression is positive thus

$$\sin\left(\cos^{-1}u\right) = \sqrt{1 - u^2}$$

III WTP_
$$\cos\left(\tan^{-1}u\right) = \frac{1}{\sqrt{1+u^2}}$$
Let $\tan^{-1}u = b$ $u \in \mathbb{R}$ $-\frac{\pi}{2} < b < \frac{\pi}{2}$

$$\tan\left(\tan^{-1}u\right) = \tan b$$

$$u = \frac{\sin b}{\cos b}$$

$$u \cos b = \sin b$$

$$u^2 \cos^2 b = \sin^2 b$$

$$u^2 \cos^2 b = 1 - \cos^2 b$$

$$\cos^2 b + u^2 \cos^2 b = 1$$

$$\cos^2 b \left(1 + u^2\right) = 1$$

$$\cos^2 b = \frac{1}{1+u^2}$$

$$\cos b = \pm \frac{1}{\sqrt{1+u^2}}$$

Remember that b is an element in the 4th or 1st quadrant so cosine of any value in either of those quadrants is positive. Thus we have $\cos\left(\tan^{-1}u\right) = \frac{1}{\sqrt{1+u^2}}$

IV WTP
$$\cos^{-1} x = \sec^{-1} \left(\frac{1}{x}\right)$$
 $x \neq 0$
Let $y = \cos^{-1} x$
 $\cos y = \cos \left(\cos^{-1} x\right) = x$
 $\sec y = \frac{1}{x}$
 $\sec^{-1} \left(\sec y\right) = \sec \frac{1}{x}$
 $y = \sec \frac{1}{x}$
 $\cos^{-1} x = \sec \frac{1}{x}$

V WTP
$$\sin\left(\tan^{-1}u\right) = \frac{u}{\sqrt{1+u^2}}$$
 $u \in \mathbb{R}$

Let $\tan^{-1} u = y$ We restrict the range to $-\frac{\pi}{2} < y < \frac{\pi}{2}$

$$\frac{\sin y = u}{\cos y} = u$$

$$\sin^2 y = u^2 \cos^2 y = u^2 \left(1 - \sin^2 y\right) \quad \text{because we want sin } y$$

$$\sin^2 y + u^2 \sin^2 y = u^2$$

$$\sin^2 y \left(1 + u^2\right) = u^2$$

$$\sin^2 y = \frac{u^2}{1 + u^2}$$

$$\sin y = \pm \frac{u}{\sqrt{1 + u^2}}$$
Since $y = \tan^{-1} u$ we know $-\frac{\pi}{2} < y < \frac{\pi}{2}$.

Lets consider the interval $0 \le y < \frac{\pi}{2}$. This is the first quadrant. Sine and cosine are both positive in the first quadrant so we know $\sin y \ge 0$ so we select the positive square root.

In the interval $-\frac{\pi}{2} < y < 0$ (the fourth quadrant) we know cosine is positive and sine is negative thus we know $\tan y$ is negative and since $\tan y = u$ we also know u is also negative. The significance of this is that we do *not* need the negative sign to make the expression $\frac{u}{\sqrt{1+u^2}}$ negative so the conclusion is that

$$\sin\left(\tan^{-1}u\right) = \frac{u}{\sqrt{1+u^2}} \qquad u \in \mathbb{R}!$$

We can also explore these topics using triangles like we did in the first unit!